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Objectives of lab

The purpose of this lab is to design and implement a sensor system capable of measuring
the position of a mechanical oscillator’s top mass. In doing so, this lab aims to apply the
information presented in class on second order systems experiencing a sinusoidal input.
Additionally, this lab serves to test the cumulative knowledge from all the previous labs by not
providing a step-by-step procedure, but instead requiring the procedure to be generated. All of
this combined means this lab will require extensive process development, iteration, and analysis
to fully understand the system and data it produces.

Theory and preparation for analysis

There are quite a few relevant processes that need to be understood in order to properly
complete this lab. Firstly, this specific lab group was assigned to the Linear Potentiometer
pre-selected sensor setup. This setup consists of a long (~80cm), highly resistant, Nickel
Chromate wire that has been stretched taut between two extruded aluminum bars vertically.
Adjacent to the wire is the oscillator setup, with an additional attachment secured to the top mass
of the oscillator. This attachment consists of a plastic exterior and a metal cube with groove cut
out of it. This groove rides against the NiCr wire as the top mass of the oscillator moves,
providing an electrical contact at any location along the setup.

To utilize this setup as a sensor, it is important to understand resistivity and general
potentiometer configuration. Every material has a property inherent to its molecular structure
that determines how well electricity will flow through it, this is called resistivity. For any given
object the total resistance of that object is determined by the resistivity, the cross-sectional area,
and the length. NiCr has a particularly high resistivity per unit volume compared to other

conductive materials (which is to say, it is not very conductive for a metal). This lab assumes that
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the cross sectional area of the NiCr wire is constant throughout its length and a constant
composition. Under these assumptions, the only determining factor between two arbitrary points
along the NiCr wire is the distance between them. Loading the total length of the wire with some
voltage will result in a voltage drop across the entire length of the wire equal to the input voltage,
as it is the only resistor in the circuit. Tying it all together, because the resistance between any
two points only depends on the distance between them, by measuring the voltage between the
ground and wherever the setup interfaces with the wire, some portion of the input voltage can be
measured proportional to the length of the wire. In other words, the distance between the bottom
of the wire and wherever the top mass is located can be determined by measuring the voltage

between their two locations, as seen in Figure 1.

Meas

Figure 1: Diagram depicting the linear potentiometer setup with sensor and power
Applying this knowledge is sufficient to get a strong set of data out of the sensor setup,
but in order to interpret that data and its relationship to the input, second order systems must
first be understood. A second order system is characterized by the presence of some oscillatory

behavior as part of the system’s response to an input. For a system like this lab’s linear
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potentiometer setup, that inertial behavior comes from the masses of the oscillators. For a second
order system, the response to a sinusoidal input also takes a sinusoidal form, with some notable
behaviors in addition. Firstly, every second order system has something called a natural
frequency. The natural frequency is a description of the frequency an undamped system will
oscillate at with no additional inputs after the initial stimulus. For an underdamped oscillator,
like the ones used in this lab, the natural frequency is difficult to measure directly. To get around
this, the damped natural frequency can be found instead. This is the actual frequency a system
will oscillate at when provided an abrupt input change. That is to say, given a step input, the
system will oscillate at the damped natural frequency with decaying magnitude until it reaches a
new steady state value. This relationship can be seen in Figure 2, where the response of a system

oscillates at its natural frequency before reaching a steady state.
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Figure 2: A graph depicting a second order response to a step input

Another important characteristic associated with a second order system is the damping
ratio of the system. Second order systems that are driven at the same frequency as their natural

frequency will experience a large increase in the magnitude of the output. This is a result of the
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phase of the input alignment with the phase of the system’s natural frequency, creating a system
with no destructive wave interaction. The damping ratio describes how much the magnitude of
the system’s output will grow when the input is driving the system at its natural frequency. This

amplitude increase factor is denoted by the frequency dependant variable M(®). The relationship

between a systems damping ratio and the amplitude factor M(®) can be seen in Figure 3.
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Figure 3: The magnitude of a system’s response vs how close to the natural frequency it is being driven
Due to the nature of a second order system, it must have inertia. Thus, the output will
take additional time to catch up with what the input is doing due to the time it takes for the mass
to accelerate. This delayed response is known as the phase lag of the system, and the
relationship between the input frequency and the phase lag can be seen in Figure 4. Phase lag

manifests itself as a frequency dependent time offset from the input function to the output
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function. The output response to a sinusoidal input will be shifted later in time by the phase lag

according to the frequency it’s driven at.
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Figure 4: The relationship between frequency ratio to the phase shift

Finally, the relationship between the input frequency and the response frequency is very

important to understanding a second order response. A keen-eyed reader would notice that, out

of all of the previous parameters listed above, not a single one of them has modified the

frequency of the response relative to the input. While the phase lag might shift it around, no part

of a second order response actually alters the input frequency provided to it. Thus, the frequency

that a second order system oscillates at depends entirely on the frequency of the input provided

to it.
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Appropriate tables of symbols and equations

For this lab, nearly all of the equations necessary for the analysis relate to analyzing

second order equations. To start, the general form a second order response takes is as follows:

y(t) = KX p M(w)sin(wt + ¢p(w) + ¢o) + KAy + O B

Where

K = Sensor sensitivity (V/m)
Xg = Input magnitude (m)
M(®) = Magnitude ratio (unitless)
¢(®) = Frequency dependant phase lag (radians)
¢, = Initial phase lag (radians)
A, = Input amplitude offset (m)
O = Sensor offset (V)

The values for M(®) and ¢(®) depend on the frequency the system is being driven at, as
well as on the damping ratio (which can be seen in Figures 3 and 4 respectively). The equations

for these variables are below:

1
M(w) =
VA (G222 20 )?
2)
2¢ 7
¢(w) = _ta’nil( — ( :f 2 )
" 3)

Where

® = Driving frequency (radians/s)
®, = natural frequency of the system (radians/s)
¢ = damping ratio (unitless)

M(w) basically describes the factor of how different the response magnitude is to the
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input magnitude. Because of this, it can be helpful to understand the difference between the

output’s magnitude and the input’s magnitude. Thus, the dynamic error equation is defined as:

dw) = |Mw) -1 @)

The damping ratio has several important relationships, but the first is how it interacts
with the damped natural frequency (®,). This is the system's natural frequency after damping has

been taken into account, and is defined as follows:

)
This relationship is quite useful, as the damped natural frequency is the frequency the
system oscillates at when introduced to a step input function. That allows ®, to be determined
through data by analyzing the peak voltage values of the system’s response. Similarly, by
analyzing a step response the “envelope” of the step response can be modeled similarly to a 1st
order response. This envelope determines the amplitude bounds of the oscillations as the
response approaches steady state. This relationship can be modeled as:

—(tew,, ()

Yenvelope = Yoo + (V0 — Ve Je
(6)

Where

y., = amplitude at steady state (V)
yo = amplitude before step input (V)

The important takeaway from this equation is in the exponent. This takes the same form
as a first order response, and as a result an effective time constant can be determined for this

system:
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(7

(8)

Now, with Equations 6, 7, and 4 there are two unknown values ( y(t), y.., Yo, t, and @4
can all be determined from data collected from a step response) and two equations with which to
solve. Rearranging values from Equation 7 and Equation 5, the following relationship can be

used to determine ¢ using just data acquired from a step input response:

.g =
)
Now, this relationship is useful due to how ¢ is defined. As the name might imply, ¢
represents the ratio of how damped the system is to the system’s critical damping. This
relationship looks like the following:
c
(=
r (10)
Where

¢ = damping constant of the system (Ns/m)
¢, = critical damping of for the system (Ns/m)

The system damping is a variable that depends on the energy dissipation of the system,

where the critical damping of the system is defined as:
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cor = 2vVkm
(11)
Where

k = spring constant of the system (N/m)
m = the mass of the system (kg)

Thus, by finding the spring constant, mass, and response to a step input of this system it
is possible to combine Equations 11, 10, and 9 to solve for the c.

One more equation involving oscillations is the equation for Q. Q describes the maximum
value of the magnitude ratio M(®), which is when the system is being driven at its resonance
frequency. This relationship is useful for determining the damping ratio of the system if the

resonance frequency can be found:

Q=Mw=w,)=

1
2¢ /1 _ (2
The last relevant equation to this lab does not relate to a second order system, but instead

describes how a linear potentiometer works (discussed in the Theory section above). The

resistance of a given object is determined by the resistivity equation:

L
R=p—
- (13)

Where

L =length of object (m)
A = Cross-sectional area of object (m?)
p = resistivity of the material (Q2m)

While the actual resistance value is not necessary to calculate for this lab, this equation is

important to understanding the procedure and the system as a whole.
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Equipment lists
Equipment Name | Manufacturer Model Resolution Range
Data Acquisition National PCI-6221 0.00015 V 98V
Board Instruments
Linear Boston ME310 #1 0.0001 m 3.82Q
Potentiometer University
Oscillator
Power Supply Agilent E3631A 0.001 V 0-6V/0-25V
Multimeter Keysight 34461A 10 MHz 0.1Vto 1 kV
Meter Stick Johnson M391/40-0560 +/- 0.0005m Im

Table 1: List of equipment used durn the lab and their respective resolutions and ranges

Methods and Materials

For this lab, three different sensor configurations were trialed until a sensor with
sufficient accuracy was produced. The first setup involved creating a Wheatstone Bridge and
using the resistance from the potentiometer as one of the legs in the bridge. This caused several
issues however, as balancing the bridge at steady state required three additional resistors. With
these additional resistors, even trying to read a signal at steady state produced a graph with
unpredictable values, and a seemingly random slope. Ultimately, due to this setup’s low relative
sensitivity, high signal to noise ratio, and complex setup requirements the Wheatstone Bridge
design was scrapped.

The second design iteration for this lab opted to remove two of the resistors to create a
voltage divider circuit between the potentiometer value and another resistor. Balancing this setup
did prove easier than the Wheatstone Bridge, but still came with its own problems. Most notably,

as part of this setup, the voltage across the constant resistor was being measured, not the voltage
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across the potentiometer. This meant that any change in resistance of the potentiometer was only
felt in the sum of the two resistances values for this configuration. Given the small magnitude of
the potentiometer’s resistance changes R, + R, + AR, = R, + R,. This also created a situation
where, even at steady state, the measured values of this sensor were random and non-constant,
likely as a result of noise.

After multiple trails of unusable data, the third and final experimental setup was
determined. This setup (seen in Figure 1) uses just the resistances measured across a portion of
the potentiometer. By applying a voltage across the two ends of the NiCr wire, the voltage drop
across this wire is equal to the total voltage applied to it ( assuming negligible added resistance
from other connections). This means that by measuring the voltage between the ground point and
wherever the top mass of the oscillator is connected, the voltage drop will be proportional to the
distance between them. This also means that the full scale voltage of the sensor is directly
controlled by the applied voltage across the entire wire. This means that a higher input voltage
would actually produce a larger sensitivity value (with diminishing returns). With that being said,
there are some safety limitations. Since the entire potentiometer necessitates an exposed wire,
feeding the setup with a large voltage value could potentially draw a dangerous amount of
current. Keeping that in mind, this lab opted for an input voltage of 2V. This generated data that
was magnitudes better than the previous two configurations, and stayed near constant at steady
state. Because the data was so smooth, a hardware filter was determined to not be necessary.

The voltage values produced by this setup were fed via a BNC connector into the DAQ
Board, which was then used to record data. With this setup, the board was set to record at
100kHz for 5 seconds, producing 500,000 data points. Figure 5 shows this configuration as a

block diagram, with values for the sensor parameters found later in this lab.
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Figure 5: Block diagram of the lab’s sensor setup

With the experimental setup solidified, there are three main processes required to
properly analyze this system. The first procedure is to calibrate the system. The goal of these
steps is to find the relationship between the voltage measured and the actual position of the top
mass. Additionally, this data can also be used to determine the spring constant of the system.

To begin, the initial data acquisition should be done while the system is at steady state.
This provides the onloaded (except by gravity) position of the system. While unloaded, use a
meter stick to measure the distance between the top of the topmost mass and some fixed point
(this lab referenced the black base plate). Next, hang a 200g mass from the top mass and allow it
to displace the mass and reach a steady state. While resting at this new steady state, record
another set of 500,000 data points, and measure the new height with the meter stick. The
extremely high quantity of data recorded for each trial effectively negates the effects of any
outliers/random noise in the data. This is reflected in the uncertainty values later on in this lab.
Repeating this loading procedure many times with different masses will result in several
important details of the system. Converting the masses into weight, the applied force to
displacement relationship from this procedure can be used to calculate the spring constant of the

system, k. Additionally, using the mean voltage for each steady state position allows a
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relationship between voltage and position to be generated (discussed further in the Analysis
section).

The second procedure for this system is useful for characterizing the oscillatory
properties of the system. To start, the system should be connected to the DAQ board and Power
Supply as in the previous procedure. For this procedure, the first step is to hold the top oscillator
at some position away from its equilibrium resting position (high or low are both valid). While
the top mass is being held, start the data acquisition process and wait approximately two seconds.
After two seconds, release the mass from its current position and allow it to return to
equilibrium. Repeat this process at least three additional times, though more data will result in a
smaller uncertainty value. The value of this procedure is that it showcases the system’s damped
natural frequency as the system reacts to a step input. This damped natural frequency would
otherwise be quite difficult to model, so finding it experimentally is extremely helpful to start
analyzing the system.

The final procedure is used to gather experimental data for the system's response to a
sinusoidal input. With the oscillator hooked up to the DAQ Board, start the input motor at 5%
power. Once the output has reached a steady state oscillatory response, start the data acquisition
and allow it to record for the full five seconds without interruption. Save this data set using a
labeling system that differentiates what power setting the input was set to, as well as if the
previous trial was a higher or lower value (for hysteresis analysis). After collection, increase the
power setting of the input by another 5% and repeat the acquisition. Notably, as the magnitude of
the response starts to get quite large, the power incrementation between trials should decrease
from 5% to 2% until the amplitude decreases again. This will provide a better resolution around

the resonance frequency, and help analysis in the future. Additionally, making sure the wires
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have enough slack while oscillating is extremely important to getting good results, as a taut wire
will frequently break connection or introduce extra noise into the data. Once the output has been
measured at 100% power, start reducing the power in increments of 5% per trial all the way

back down to 5%.

Figure 6: An excited experimenter (left) next to the oscillator system setup (right)
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In-Lab Notebook
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Analysis

All sample calculation screenshots shown in this section and the Uncertainty Section are
taken from the In-Lab Notebook section. All sample calculations performed in this section utilize
the first trial values from the data tables. In this lab, the first step of interpreting the data was

calibrating the system. To achieve this, a weighted calibration was performed as shown below.

Mass (g) Position (m)Xi - Position (m) Ymi - Meas Voltage (V) STDEV Up wi (wi(xi*2)) wiymi wixi wixiymi  yfit (V) (yfit - yrneas)"2l
0 0.437 0.356 0.9072 1.34E-04 3.70E-07 7.29E+12 9.24E+11 6.61E+12 2.60E+12 2.35E+12 0.907 4.76E-07
200 0.422 0.341 0.8633 1.31E-04 3.62E-07 7.63E+12 8.87E+11 6.59E+12 2.60E+12 2.25E+12 0.865 4.04E-06
400 0.395 0.314 0.7919 1.29E-04 3.58E-07 7.82E+12 7.71E+11 6.19E+12 2.46E+12 1.94E+12 0.791 5.61E-07
600 0.38 0.209 0.7505 1.39E-04 3.87E-07 6.69E+12 5.98E+11 5.02E+12 2.00E+12 1.50E+12 0.750 3.01E-07
800 0.349 0.268 06681 1.19E-04 3.30E-07 9.16E+12 B.58E+11 6.12E+12 2.45E+12 1.64E+12 0.665 1.09E-05
1000 0.339 0.258 0.6339 1.23E-04 3.42E-07 8.55E+12 5.69E+11 5.42E+12 2.21E+12 1.40E+12 0.637 1.18E-05
Avg: 500 0.387 0.306 0.76915 1.29E-04 3.58E-07 7.86E+12 7.35E+11 5.99E+12 2.39E+12 1.85E+12 0.769 4.68E-06
Sum: 4T1E+13 4.41E+12 3.60E+13 1.43E+13 1.11E+13
Syx: 3.06E-06
Bw 2.88E+24 Position Fit Upper Lower Upyfit (V): 5.99E-06
a0 -0.071296 V 304.34 30434 304.33 Upxfit (mm): 2.18E-03
al 2.746646 Vim 28835 28836 28835 Ub,1 (res) (V): 7.50E-05
26236 26236 262.36 Utotal (V): 7.52E-05
Inverted 24728 24729 24728 Utotal (mm): 2.74E-05
al 0.364080 m/V 217.28 21729  217.28
a0 -0.025957 m 204.83 204.84 204.83

Table 2: Raw data, calibration terms, and fit values used during the calibration process

For calibration, six different masses (0g, 200g, 400g, 600g, 800g, 1000g) were placed on
the spring mass. The position of the spring mass was measured with a meter stick. The voltage
was measured at this position through the linear potentiometer at 500000 samples for 5 seconds.
The mean voltage and standard deviation was automatically calculated via the script used to
collect them. These measurements are shown in Table 1 next to the position data. Table 1
contains all the calculations performed to calculate the slope (a,) and y-intercept (a,) values of
the linear calibration curve. These values were also inverted to be able to later convert the
measured voltages to a position on the potentiometer. The following sample calculations were

performed to get the linear fit constants, a, and a,.
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Table 3: Raw data used for calculating the spring constant

For calculating the spring constant, we used five masses (201g, 501g, 702g, 902¢g, 1003g)

to place on the spring mass. The initial height and final height of the spring mass was measured
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as Ax in Table 3. The total load was calculated by multiplying the total mass (spring mass +
added mass) by the acceleration due to gravity (9.8m/s?). The spring constant was calculated by
dividing the total load by the Ax. The final spring constant values are displayed in the last
column of Table 3.

Since the potentiometer sensor isn't detachable from the upper collar, the output of
second-order motion, the characteristics of the input, or bottom collar, needed to be calculated
from the behavior of a step input. The step input responses allowed for an envelope analysis to
be performed, resulting in system parameters such as the natural frequency and damping ratio.
For redundancy, the envelope analysis was performed through two different methods; one
through Matlab and the other on Microsoft Excel. In both analyzes, the output data of the step
input runs were manipulated to find the varying decaying amplitude.

Starting with the Matlab variation; our different runs were analyzed, each with a different
initial state, resulting in four different output responses as displayed in Figure 7. Due to the clean
nature of the data, no filtering was necessary for this specific analysis. Next, the mean value of
the final position, or steady-state voltage, was retrieved from the data by only using the time
range between four and five seconds after data acquisition began. This mean value was then used
to normalize the output response onto the x-axis, upon which the absolute value of the data was
taken to have more peaks, and thus more data points for the envelope analysis, which is
displayed in Figure 8. The “findpeaks” function is then applied to the manipulated data to find an
oscillation period and exponential envelope slope, which is defined by Equation 7. The slope,
referred to as tau, has two unknowns, which are the same unknowns in Equation 5. With this in
mind, the system of equations composed of Equation 5, Equation 7, and the natural frequency

and damping ratio is able to be solved.
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Figure 7: An overlay of all step-input responses as a function of time
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Figure 8: The manipulated step-response functions for peak analysis
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Similarly, the step function analysis through Microsoft Excel solved for the same system

of equations consisting of Equation 5, Equation 8, and Equation 9.

High 1 High 2
Time (s) Position (m) Adjusted Position (m) t Tau |Time(s) Position (m) Adjusted Position (m) t Tau
1.881 0.2411 04075 0.132 0.372 1.332 0132 051 0.147 0486
2.005 0.3734 0.3734 0256 0.290 1.452 0.4552 04552 0.267 0414
2134 0.3001 0.3485 0.385 0.242 1.585 02358 04062 04 0364
1.704 0.3797 03797 0.519 0.353
1.84 0.2858 0.3562 0.655 0.330
Yinf: 0.3243 Yinf: 0.321
YO: 0.4429 YO: 05767
Drop Time: 1.749 Drop Time: 1.185
Average T 0.253 Average T 0.254
wd: 2483 wd: 2473695003
Low 1 Low 2
Time (s) Position (m) Adjusted Position (m) t Tau |Time(s) Position (m) Adjusted Position (m) t Tau
1.849 0.3871 0.2533 0127 0.361 1.726 0.5079 0.1317 0.136 0.345
1.965 0.2838 02838 0.243 0253 1.862 0.1896 0.1896 0.272 0.357
2107 0.3384 0.302 0.385 0233 1.987 04102 02294 0.397 0.352
2117 0267 0267 0527 0.317
2232 0.35 02896 0.642 0.289
Yinf: 0.3202 Yinf: 0.3198
YO: 0.2251 YO: 0.04085
Drop Time: 1.722 Drop Time: 1.59
Average T: 0.258 Average T: 0.253
wd: 2435343142 wd: 2483472453
Average Tau: 0.335
Average wd: 24 69
wn: 24 8698159
Damping Ratio: 0.120048653

Table 4: Raw data, intermediate calculations for the time constant (tau), damped natural frequency (w,), natural
frequency (w,), and damping ratio.

After collecting the data as shown in Figures 7 and 8, values were put into Excel to

perform the necessary calculations to solve for the resulting natural frequency and damping ratio.

The time constant value (“Tau” in Table 4) for each peak was calculated using Equation 8. The

time constant values for all peaks of all four test trials were averaged to get an average time

constant value of 0.335s. For each of the four test trials, the damped natural frequency was

calculated by converting the period between two peaks from seconds to radians/second. After

averaging the damped natural frequencies for all four trials, the damping ratio was calculated
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using Equation 9 by using the average damped natural frequency and average time constant. The
natural frequency was then calculated using Equation 5. These calculations are shown in the

sample calculation below.

A third method used to determine the damping ratio related to the sharpness of resonance,
commonly noted as the quality factor, Q. This parameter is defined in Equation 12 and relates the
maximum amplitude ratio to the damping ratio. By utilizing our data at maximum amplitude,
which was determined visually on the day of data collection, a quick calculation was performed
to gather another unique value for the systems’ damping ratio for sake of redundancy and

cross-referencing. A sample calculation for this calculation is shown below.

As shown in the sample calculation below, the damping constant (¢) was calculated using
equation 10 (with a substitution of Equation 11). The damping constant was calculated to be

0.847 N?s?/m>.
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Upon completion of the analysis of system parameters, the main sinusoidal data was
interpreted resulting in experimental amplitude ratios across a wide frequency range. To acquire
the magnitude data out of the system response, the sinusoidal amplitude was needed, which was
extrapolated using Matlab.

The first step involved visually inspecting the collected data sets from the potentiometer,
ranging from 10% power to 100% power in increasing and decreasing increments. In Figure 9.
the raw output can be visualized for a five second data acquisition period at 60% power (the
corresponding natural frequencies that correlate with each system power step are determined by
the calibration process and are referenced in the Results section). Moving forward, all sample
plots show the applied analysis to only the 60% power data, but it can be assumed that all

processes were carried out to all data sets for accurate results.
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Figure 9: The raw position-output of the potentiometer in Volts
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As can be seen, the raw data isn’t as “clean” in terms of signal noise as deemed
acceptable for amplitude analysis. The far outliers on both extrema represent a physical loss of
contact between the potentiometer wire and variable bar, resulting in large spikes. Due to an
impurity in the wire closer to the lower end of its range, its plausible to relate the largest of these
outlier points to this physical anomaly.

To clear these outliers analytically, a “hampel” filter is used. Found within the Matlab
definitions, the “hampel” filter is a variation of windowed length parameter identifier, that
calculates the median and standard deviation within a given window or range. If an outlier
exceeds the standard deviation threshold of the given window, its value is replaced by the
calculated median value. This filter effectively cleared the physical noise that was recorded by

the potentiometer and resulted in a graph shown in Figure 10.
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Figure 10: The output of a hampel filter applied to the data for 60% power
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Upon successfully implementing the digital filter, most of the signal processing has been
completed. The following manipulation resembles closely to the steps taken for the step-input
function response, where the mean of the data was calculated and used to normalize the the data
onto the x-axis, as well as taking the absolute value of the data set to invert all peaks onto one
quadrant. This manipulated form of the data, as seen in Figure 11, signifies the final preparation

before applying a “findpeaks” function to solve for the amplitude of each dataset at each

frequency.
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Figure 11: The final manipulated form of the sinusoidal data for 60% power

The following figure depicts a visual representation of what the “findpeaks” function
calculates, and the mean amplitude value of each of all orange circles provided an accurate

estimation of the mean amplitude of the second-order system response at each given frequency.
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Clean Manipulated Data with Peaks
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Figure 12: The “findpeaks” function clearly depicting the amplitude of the data set

After applying the aforementioned processes to all frequencies, the effective experimental
amplitudes were divided by the input amplitude, known as Xg, to give a vector of amplitude
ratios. These values were plotted over a range of frequencies ratios (w/w,) to give a final graph
resulting in the relationship between magnitude and frequency. Uncertainty was introduced in

terms of error bars, and is described in detail in the following section.
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Uncertainty Analysis

For this lab, we needed to perform an uncertainty analysis for the linear system
calibration for the position vs voltage data collected. Because the voltage measured was collected
by the computer in samples of 500000 for 5 seconds, the standard deviations were also
automatically calculated which we used in the uncertainty analysis. All sample calculations
shown are using the first values from the first trial or the average values. The sample calculations
shown below are the calculations needed to calculate the yg; values using the calculated
calibration values for a; and a,. From these values for each of the six masses used in calibration,
we solved for the standard deviation using the formula also shown in the sample calculation
below. Using the standard deviations and t-values (determined by the number of samples taken -

2 which was 499998), the uncertainty came out to be =£0.00000599 V [95%].

Yub = Kl Yay = 9.'556)_('1.75%) T O.O?”?V =0.9065V

__]/ T (954~ Imeas ) 5 080004677 oE
= : = 0.00000%0
v [ ~w49997 059

\)F,ja‘\'r =2 5(,‘,('5%,‘5% 20.00000305% * | 9 =tp . 00600 599 V E‘qmj
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Using the calculated inverted a, value, we were able to propagate the random uncertainty of the

yii values from volts to millimeters as shown in the sample calculation below.

JUP X AL e o ee———
NP xpy = O : : O L S NP
- Fosie " Am «( * 1000m2 = (o, 000005990) (0,361 m)( et
— o.00im——_  SI0.90%U8% ma

V.

In the following sample calculation, the systematic uncertainty of the ADC’s resolution
was calculated to be £0.000075 V. Using error propagation, the total uncertainty in volts was

calculated to be £0.0000752 V. To convert the total uncertainty of the calibration curve from
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volts to millimeters, the total uncertainty in volts was multiplied by the inverted a, value to get a

total uncertainty value for the calibration curve of £0.0000274 mm.

After calculating the total uncertainty of the calibration curve, uncertainties of the second
order response variables are needed to be calculated. As shown in the sample calculation below,
the uncertainty of the damping frequency, w,, was calculated using the four samples that we used
for finding the damping ratio, the standard deviation of the four samples, and the t-value
associated with the number of samples. The uncertainty of the damping frequency was calculated
to be +0.364 rad/s. The uncertainty of the time constant was calculated by the number of peaks,
the standard deviation and t-value which came out to be +0.0345s. Using these two uncertainties
with Equation 9 from above, the uncertainty of the damping ratio can be calculated. The partial
derivative of Equation 9 was calculated with respect to the damping ratio and the time constant
while multiplying by their respective damping ratio and time constant uncertainties for the error
propagation used in the uncertainty below. The uncertainty of the damping ratio came out to be

+0.0123 [95%].
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K1: 107.23
K2: 100.98
K3: 93.47
K4: 92.26
K5: 96.39
Average k: 98.066
Std k: 6.126012569
Up,k: 7.588792017
Mass of weight (kg 0.12695
Uc part 1: 0.08686839049
Uc part 2: 0.03277834841
Uc,tot: 0.09284684911

Table 5: Raw data and values for uncertainty of the spring constant, k.

Using the five spring constant trials from Table 5, we were able to calculate the random
uncertainty by finding the standard deviation, number of samples, and the t-value associated with
the number of samples. The uncertainty of the spring constant (k) was calculated to be +7.59
N/m. Using the spring constant uncertainty, damping ratio uncertainty, and Equation 10
(combined with Equation 11), the uncertainty of the damping constant was able to be calculated.
In the error propagation shown in the sample calculation below, the partial derivatives of
Equation 10 with respect to the damping ratio and spring constant were calculated. In Table 5,
“Uc part 1” and “Uc part 2” represent the resulting value of the partial derivative of a variable
multiplied by the uncertainty of that variable. The uncertainty of the damping constant, ¢, was

calculated to be £0.0928 N?s*/m? [95%].




Smith, St. Germain, Dimo 33

In the uncertainty calculation for the natural frequency, the error propagation uses the
uncertainties of the damping ratio and damping frequency as well as the partial derivatives of
Equation 5 with respect to the damping ratio and damping frequency. As shown in the sample

calculation below, the uncertainty of the natural frequency was calculated to be +0.369 rad/s

[95%].
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Results

The following plots depict the final relationships calculated and described throughout this
lab report. The first plot is a visual representation of the calibration curve performed to fit the

output of the potentiometer to a physical position parameter.
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Figure 13: Measured position vs recorded voltage values from calibration with uncertainty bounds in red.
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The next graph represents the time-dependent position of the top collar for four different

frequencies. It is worth noting that the graphs include the original data as measured by the

potentiometer and the filter data after applying digital signal processing, both of which have been

converted into units of meters through the calculated calibration curve.
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Figure 14: Raw data (blue) on the same plot as filtered data (red) for four select frequencies
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The following graph plots the experimental amplitude ratio for all data sets, including

distinction between increasing and decreasing increments, along with the theoretical

frequency-dependent magnitude response based on experimental system parameters.
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Figure 15: Theoretical Magnitude of the system plotted with experimental amplitude ratios at system frequencies
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The following graph is shown to provide a clearer picture of the behavior of error and

magnitude at the upper end of the frequency range that the system was capable of producing.
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Figure 16: Enlarged upper frequency range to visualize constant-frquency cluster
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The last plot depicts the theoretical phase shift of the second-order system as a function
of the frequency domain.
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Figure 17: Theoretical phase shift of system at a damping ratio of 0.12

Lastly, a table of all system parameters, including uncertainty, shown below as a

culmination of every analytical procedure performed in this lab.
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Results:
K: 98.066 +/- 7.589 (N/m) [95%)]
Whn: 24 8698 +/- 0.3689 (rad/s) [95%)]
Damping Ratio: |0.12 +/- 0.0123 [95%)]
c: 0.847 +/- 0.0928 (N*2*s"2/m*"2) [95%)]
m: 0.127 (kg)
K: 2.747 +/-7.52E-5 (V/m) [95%]
A: 0.0318 +/- 0.0005 (m) [95%]
KAQ + O: -0.0713 +/- 7.52E-5 (V) [95%]

Table 6: Final results with uncertainty.

Discussion and Conclusion

Looking at the parameters and descriptions this lab developed, there are some interesting
features worth discussing. Firstly, nearly all the calculated uncertainty values for values in this
system were quite small, usually under 10% of the nominal value. The best explanation for this
comes from the extreme amount of data collected in each measurement. Collecting 500,000 data
points per value is certainly overkill for simple measurements like the ones done in the
calibration, but the benefit can’t be denied. Having such a huge amount of data means that any
amount of random uncertainty effectively rounds away due to significant figures, so effectively,
all of the uncertainty comes straight from the measuring devices and other biased sources. This
high confidence in the values is even shared with the spring constant uncertainty, which has an
uncertainty value less than 10% despite only acquiring five values. While a large sample size
doesn’t apply to this particular calculation, the standard deviation between the five values was
quite small, which resulted in a high confidence in this value as well.

The theoretical M(w) graph and the X/X, plots found in Figure 15 both represent the
same idea, though M(w) is modeled theoretically, while the X/X, values were recorded
experimentally. The first thing that pops out when viewing this graph is the difference between
the maximum value for M(®) and the maximum experimental value. This difference is likely due

to an overestimate of the damping ratio in the model. Q-analysis indicates a damping ratio of
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0.08, which represents the model that would be developed from the experimental amplitude data,
while this lab's other methods result in a value of .12 generated from step function analysis. This
could have been caused by small variations in the experimental setup between when the step
function data was collected and when the oscillatory data was collected. While their relationship
has similar values at resonance (ignoring the resonance outlier), there is a notable gap between
the two plots on the left side of the peak (before resonance frequency). For values near
resonance, this offset would likely be due to the higher amount of uncertainty present for larger
M(w) values. At these near resonant frequencies, the amplitude of the peaks would vary more,
and thus the confidence in the amplitudes would be lower. For values far from resonance, this
offset is likely due to the low amount of energy being applied to the system, which means that
frictional effects represent a larger percentage of the system’s interactions. This explanation also
describes the flat-topped behavior of the 20% power graph seen in Figure 14, as the second mass
was moving slow enough near the top and bottom of each oscillation that static friction likely
took over and held the mass still before continuing to oscillate.

A quick note about the phase lag relationship seen in Figure 17, since nearly all the data
points after 60% power had a frequency ratio (0/w,) of ~1.4, these measurements should all be
several radians out of phase. Unfortunately, there is no way to confirm this using the
potentiometer sensor setup. Removing the top mass from the potentiometer setup was not an
option in this lab, as there was a fear that it might damage the wire or connection. As a result, the
actual input function of the bottom oscillator could not be measured to determine @,.

While this lab did produce quality data with good confidence intervals, there are still
pieces of the procedure that could be improved upon. While the first two experimental setups

(described in the Methods and Materials section) were an important part of the experimentation
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process that ultimately led to the final setup, they were ultimately a result of rushing ahead
instead of planning. Had the approach been more focused on theory for the first day and made
fewer assumptions early on, multiple hours worth of useless data collection could have been
prevented. Another issue present with this lab's procedure was the large gaps of data around the
resonance frequency shown in Figure 15, an unfortunate result of the order this project took data
in. All the data collection for an oscillating input was taken in one sitting, as the consistency of
the wires and climate was determined to be more valuable than repeated sessions. A repercussion
of this decision was that by the time data analysis began, it was too late to collect any more. With
an opportunity to do things differently, collecting data in smaller increments and with
redundancies around the resonance frequency would definitely be one of the main changes that
could improve this procedure. Additionally, collecting more data on the downward trend would
have provided a better understanding of potential hysteresis effects on the system. One final
improvement that could have been made would be to also use more points to determine the
spring constant of the system, k. This would reduce the uncertainty value for this parameter even
more, providing more confidence in its calculation.

In terms of feedback for this lab, this group definitely felt a strong time crunch as the
presentation and write up deadline got closer. Given the long time frame provided to complete
this, and the large amount of effort the write up and subsequent presentation required, a
recommended timeline that mentions key milestones would be a valuable resource for future lab
groups. This tool could provide groups with a better understanding of their progress towards the
final deadline, and help groups distribute the workload over the duration.

Ultimately, this lab tested many important skills from this class and industry that will

prove extremely valuable moving forward. By designing and testing a sensor from scratch, this
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lab taught valuable lessons on troubleshooting, iteration, and group design. Similarly, applying
second order response knowledge to real world unfiltered data validated the usefulness of
equations shown in class, substantiating the purpose of this lab further. With that being said, the

objective of this lab was a clear success, even despite the large workload required to complete it.



