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 Objectives of lab 

 The purpose of this lab is to design and implement a sensor system capable of measuring 

 the position of a mechanical oscillator’s top mass. In doing so, this lab aims to apply the 

 information presented in class on second order systems experiencing a sinusoidal input. 

 Additionally, this lab serves to test the cumulative knowledge from all the previous labs by not 

 providing a step-by-step procedure, but instead requiring the procedure to be generated. All of 

 this combined means this lab will require extensive process development, iteration, and analysis 

 to fully understand the system and data it produces. 

 Theory and preparation for analysis 

 There are quite a few relevant processes that need to be understood in order to properly 

 complete this lab. Firstly, this specific lab group was assigned to the  Linear Potentiometer 

 pre-selected sensor setup. This setup consists of a long (~80cm), highly resistant, Nickel 

 Chromate wire that has been stretched taut between two extruded aluminum bars vertically. 

 Adjacent to the wire is the oscillator setup, with an additional attachment secured to the top mass 

 of the oscillator. This attachment consists of a plastic exterior and a metal cube with groove cut 

 out of it. This groove rides against the NiCr wire as the top mass of the oscillator moves, 

 providing an electrical contact at any location along the setup. 

 To utilize this setup as a sensor, it is important to understand  resistivity  and general 

 potentiometer configuration. Every material has a property inherent to its molecular structure 

 that determines how well electricity will flow through it, this is called resistivity. For any given 

 object the total resistance of that object is determined by the resistivity, the cross-sectional area, 

 and the length. NiCr has a particularly high resistivity per unit volume compared to other 

 conductive materials (which is to say, it is not very conductive for a metal). This lab assumes that 
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 the cross sectional area of the NiCr wire is constant throughout its length and a constant 

 composition. Under these assumptions, the only determining factor between two arbitrary points 

 along the NiCr wire is the distance between them. Loading the total length of the wire with some 

 voltage will result in a voltage drop across the entire length of the wire equal to the input voltage, 

 as it is the only resistor in the circuit. Tying it all together, because the resistance between any 

 two points only depends on the distance between them, by measuring the voltage between the 

 ground and wherever the setup interfaces with the wire, some portion of the input voltage can be 

 measured proportional to the length of the wire. In other words, the distance between the bottom 

 of the wire and wherever the top mass is located can be determined by measuring the voltage 

 between their two locations, as seen in Figure 1. 

 Figure 1: Diagram depicting the linear potentiometer setup with sensor and power 

 Applying this knowledge is sufficient to get a strong set of data out of the sensor setup, 

 but in order to interpret that data and its relationship to the input,  second order systems  must 

 first be understood. A second order system is characterized by the presence of some oscillatory 

 behavior as part of the system’s response to an input. For a system like this lab’s linear 
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 potentiometer setup, that inertial behavior comes from the masses of the oscillators. For a second 

 order system, the response to a sinusoidal input also takes a sinusoidal form, with some notable 

 behaviors in addition. Firstly, every second order system has something called a  natural 

 frequency  . The natural frequency is a description  of the frequency an undamped system will 

 oscillate at with no additional inputs after the initial stimulus. For an underdamped oscillator, 

 like the ones used in this lab,  the natural frequency is difficult to measure directly. To get around 

 this, the  damped natural frequency  can be found instead.  This is the actual frequency a system 

 will oscillate at when provided an abrupt input change. That is to say, given a step input, the 

 system will oscillate at the damped natural frequency with decaying magnitude until it reaches a 

 new steady state value. This relationship can be seen in Figure 2, where the response of a system 

 oscillates at its natural frequency before reaching a steady state. 

 Figure 2: A graph depicting a second order response to a step input 

 Another important characteristic associated with a second order system is the  damping 

 ratio  of the system. Second order systems that are  driven at the same frequency as their natural 

 frequency will experience a large increase in the magnitude of the output. This is a result of the 
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 phase of the input alignment with the phase of the system’s natural frequency, creating a system 

 with no destructive wave interaction. The damping ratio describes how much the magnitude of 

 the system’s output will grow when the input is driving the system at its natural frequency. This 

 amplitude increase factor is denoted by the frequency dependant variable  M(𝛚)  . The relationship 

 between a systems damping ratio and the amplitude factor M(  𝛚  ) can be seen in Figure 3. 

 Figure 3: The magnitude of a system’s response vs how close to the natural frequency it is being driven 

 Due to the nature of a second order system, it must have inertia. Thus, the output will 

 take additional time to catch up with what the input is doing due to the time it takes for the mass 

 to accelerate. This delayed response is known as the  phase lag  of the system, and the 

 relationship between the input frequency and the phase lag can be seen in Figure 4. Phase lag 

 manifests itself as a frequency dependent time offset from the input function to the output 
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 function. The output response to a sinusoidal input will be shifted later in time by the phase lag 

 according to the frequency it’s driven at. 

 Figure 4: The relationship between frequency ratio to the phase shift 

 Finally, the relationship between the input frequency and the response frequency is very 

 important to understanding a second order response. A keen-eyed reader would notice that, out 

 of  all of the previous parameters listed above, not a single one of them has modified the 

 frequency of the response relative to the input. While the phase lag might shift it around, no part 

 of a second order response actually alters the input frequency provided to it. Thus, the frequency 

 that a second order system oscillates at depends entirely on the frequency of the input provided 

 to it. 
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 Appropriate tables of symbols and equations 

 For this lab, nearly all of the equations necessary for the analysis relate to analyzing 

 second order equations. To start, the general form a second order response takes is as follows: 

 (1) 

 Where 

 K = Sensor sensitivity (V/m) 
 X  B  = Input magnitude (m) 

 M(𝛚)  = Magnitude ratio (unitless) 
 ɸ(𝛚) = Frequency dependant phase lag (radians) 

 ɸ  0  = Initial phase lag (radians) 
 A  0  = Input amplitude offset (m) 

 O = Sensor offset (V) 

 The values for M(𝛚) and ɸ(𝛚) depend on the frequency the system is being driven at, as 

 well as on the damping ratio (which can be seen in Figures 3 and 4 respectively). The equations 

 for these variables are below: 

 (2) 

 (3) 

 Where 

 𝛚 = Driving frequency (radians/s) 
 𝛚  n  = natural frequency of the system (radians/s) 

 𝜁 = damping ratio (unitless) 

 M(𝛚) basically describes the factor of how different the response magnitude is to the 
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 input magnitude. Because of this, it can be helpful to understand the difference between the 

 output’s magnitude and the input’s magnitude. Thus, the dynamic error equation is defined as: 

 (4) 

 The damping ratio has several important relationships, but the first is how it interacts 

 with the damped natural frequency (𝛚  d  ). This is the  system's natural frequency after damping has 

 been taken into account, and is defined as follows: 

 (5) 

 This relationship is quite useful, as the damped natural frequency is the frequency the 

 system oscillates at when introduced to a step input function. That allows 𝛚  d  to be determined 

 through data by analyzing the peak voltage values of the system’s response. Similarly, by 

 analyzing a step response the “envelope” of the step response can be modeled similarly to a 1st 

 order response. This envelope determines the amplitude bounds of the oscillations as the 

 response approaches steady state. This relationship can be modeled as: 

 (6) 

 Where 

 y  ∞  = amplitude at steady state (V) 
 y  0  = amplitude before step input (V) 

 The important takeaway from this equation is in the exponent. This takes the same form 

 as a first order response, and as a result an effective time constant can be determined for this 

 system: 
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 (7) 

 (8) 

 Now, with Equations 6, 7, and 4 there are two unknown values ( y(t), y  ∞  , y  0  , t, and 𝛚  d 

 can all be determined from data collected from a step response) and two equations with which to 

 solve. Rearranging values from Equation 7 and Equation 5, the following relationship can be 

 used to determine 𝜁 using just data acquired from a step input response: 

 (9) 

 Now, this relationship is useful due to how 𝜁 is defined. As the name might imply, 𝜁 

 represents the ratio of how damped the system is to the system’s critical damping. This 

 relationship looks like the following: 

 (10) 

 Where 

 c = damping constant of the system (Ns/m) 
 c  cr  = critical damping of for the system (Ns/m) 

 The system damping is a variable that depends on the energy dissipation of the system, 

 where the critical damping of the system is defined as: 
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 (11) 

 Where 

 k = spring constant of the system (N/m) 
 m = the mass of the system (kg) 

 Thus, by finding the spring constant, mass, and response to a step input of this system it 

 is possible to combine Equations 11, 10, and 9 to solve for the c. 

 One more equation involving oscillations is the equation for Q. Q describes the maximum 

 value of the magnitude ratio M(𝛚), which is when the system is being driven at its resonance 

 frequency. This relationship is useful for determining the damping ratio of the system if the 

 resonance frequency can be found: 

 (12) 

 The last relevant equation to this lab does not relate to a second order system, but instead 

 describes how a linear potentiometer works (discussed in the Theory section above). The 

 resistance of a given object is determined by the resistivity equation: 

 (13) 

 Where 

 L = length of object (m) 
 A = Cross-sectional area of object (m  2  ) 

 ⍴ = resistivity of the material (𝛀m) 

 While the actual resistance value is not necessary to calculate for this lab, this equation is 

 important to understanding the procedure and the system as a whole. 
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 Equipment lists 

 Equipment Name  Manufacturer  Model  Resolution  Range 

 Data Acquisition 
 Board 

 National 
 Instruments 

 PCI-6221  0.00015 V  9.8 V 

 Linear 
 Potentiometer 

 Oscillator 

 Boston 
 University 

 ME310 #1  0.0001 m  3.82 Ω 

 Power Supply  Agilent  E3631A  0.001 V  0-6V/0-25V 

 Multimeter  Keysight  34461A  10 MHz  0.1V to 1 kV 

 Meter Stick  Johnson  M391/40-0560  +/- 0.0005m  1m 
 Table 1  : List of equipment used durn the lab and their  respective resolutions and ranges 

 Methods and Materials 

 For this lab, three different sensor configurations were trialed until a sensor with 

 sufficient accuracy was produced. The first setup  involved creating a Wheatstone Bridge and 

 using the resistance from the potentiometer as one of the legs in the bridge. This caused several 

 issues however, as balancing the bridge at steady state required three additional resistors. With 

 these additional resistors, even trying to read a signal at steady state produced a graph with 

 unpredictable values, and a seemingly random slope. Ultimately, due to this setup’s low relative 

 sensitivity, high signal to noise ratio, and complex setup requirements the Wheatstone Bridge 

 design was scrapped. 

 The second design iteration for this lab opted to remove two of the resistors to create a 

 voltage divider circuit between the potentiometer value and another resistor. Balancing this setup 

 did prove easier than the Wheatstone Bridge, but still came with its own problems. Most notably, 

 as part of this setup, the voltage across the constant resistor was being measured, not the voltage 
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 across the potentiometer. This meant that any change in resistance of the potentiometer was only 

 felt in the sum of the two resistances values for this configuration. Given the small magnitude of 

 the potentiometer’s resistance changes R  1  + R  2  + ΔR  1  ≈ R  1  + R  2  . This also created a situation 

 where, even at steady state, the measured values of this sensor were random and non-constant, 

 likely as a result of noise. 

 After multiple trails of unusable data, the third and final experimental setup was 

 determined. This setup (seen in Figure 1)  uses just the resistances measured across a portion of 

 the potentiometer. By applying a voltage across the two ends of the NiCr wire, the voltage drop 

 across this wire is equal to the total voltage applied to it ( assuming negligible added resistance 

 from other connections). This means that by measuring the voltage between the ground point and 

 wherever the top mass of the oscillator is connected, the voltage drop will be proportional to the 

 distance between them. This also means that the full scale voltage of the sensor is directly 

 controlled by the applied voltage across the entire wire. This means that a higher input voltage 

 would actually produce a larger sensitivity value (with diminishing returns). With that being said, 

 there are some safety limitations. Since the entire potentiometer necessitates an exposed wire, 

 feeding the setup with a large voltage value could potentially draw a dangerous amount of 

 current. Keeping that in mind, this lab opted for an input voltage of 2V. This generated data that 

 was magnitudes better than the previous two configurations, and stayed near constant at steady 

 state. Because the data was so smooth, a hardware filter was determined to not be necessary. 

 The voltage values produced by this setup were fed via a BNC connector into the DAQ 

 Board, which was then used to record data. With this setup, the board was set to record at 

 100kHz for 5 seconds, producing 500,000 data points. Figure 5 shows this configuration as a 

 block diagram, with values for the sensor parameters found later in this lab. 
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 Figure 5: Block diagram of the lab’s sensor setup 

 With the experimental setup solidified, there are three main processes required to 

 properly analyze this system. The first procedure is to calibrate the system. The goal of these 

 steps is to find the relationship between the voltage measured and the actual position of the top 

 mass. Additionally, this data can also be used to determine the spring constant of the system. 

 To begin, the initial data acquisition should be done while the system is at steady state. 

 This provides the onloaded (except by gravity) position of the system. While unloaded, use a 

 meter stick to measure the distance between the top of the topmost mass and some fixed point 

 (this lab referenced the black base plate). Next, hang a 200g mass from the top mass and allow it 

 to displace the mass and reach a steady state. While resting at this new steady state, record 

 another set of 500,000 data points, and measure the new height with the meter stick. The 

 extremely high quantity of data recorded for each trial effectively negates the effects of any 

 outliers/random noise in the data. This is reflected in the uncertainty values later on in this lab. 

 Repeating this loading procedure many times with different masses will result in several 

 important details of the system. Converting the masses into weight, the applied force to 

 displacement relationship from this procedure can be used to calculate the spring constant of the 

 system, k. Additionally, using the mean voltage for each steady state position allows a 
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 relationship between voltage and position to be generated (discussed further in the Analysis 

 section). 

 The second procedure for this system is useful for characterizing the oscillatory 

 properties of the system. To start, the system should be connected to the DAQ board and Power 

 Supply as in the previous procedure. For this procedure, the first step is to hold the top oscillator 

 at some position away from its equilibrium resting position (high or low are both valid). While 

 the top mass is being held, start the data acquisition process and wait approximately two seconds. 

 After two seconds, release the mass from its current position and allow it to return to 

 equilibrium. Repeat this process at least three additional times, though more data will result in a 

 smaller uncertainty value. The value of this procedure is that it showcases the system’s damped 

 natural frequency as the system reacts to a step input. This damped natural frequency would 

 otherwise be quite difficult to model, so finding it experimentally is extremely helpful to start 

 analyzing the system. 

 The final procedure is used to gather experimental data for the system's response to a 

 sinusoidal input. With the oscillator hooked up to the DAQ Board, start the input motor at 5% 

 power. Once the output has reached a steady state oscillatory response, start the data acquisition 

 and allow it to record for the full five seconds without interruption. Save this data set using a 

 labeling system that differentiates what power setting the input was set to, as well as if the 

 previous trial was a higher or lower value (for hysteresis analysis). After collection, increase the 

 power setting of the input by another 5% and repeat the acquisition. Notably, as the magnitude of 

 the response starts to get quite large, the power incrementation between trials should decrease 

 from 5% to 2% until the amplitude decreases again. This will provide a better resolution around 

 the resonance frequency, and help analysis in the future. Additionally, making sure the wires 
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 have enough slack while oscillating is  extremely  important to getting good results, as a taut wire 

 will frequently break connection or introduce extra noise into the data. Once the output has been 

 measured at 100%  power, start reducing the power in increments of 5% per trial all the way 

 back down to 5%. 

 Figure 6:  An excited experimenter (left) next to the  oscillator system setup (right) 
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 In-Lab Notebook 
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 Analysis 

 All sample calculation screenshots shown in this section and the Uncertainty Section are 

 taken from the In-Lab Notebook section. All sample calculations performed in this section utilize 

 the first trial values from the data tables. In this lab, the first step of interpreting the data was 

 calibrating the system. To achieve this, a weighted calibration was performed as shown below. 

 Table 2:  Raw data, calibration terms, and fit values  used during the calibration process 

 For calibration, six different masses (0g, 200g, 400g, 600g, 800g, 1000g) were placed on 

 the spring mass. The position of the spring mass was measured with a meter stick. The voltage 

 was measured at this position through the linear potentiometer at 500000 samples for 5 seconds. 

 The mean voltage and standard deviation was automatically calculated via the script used to 

 collect them. These measurements are shown in Table 1 next to the position data. Table 1 

 contains all the calculations performed to calculate the slope (a  1  ) and y-intercept (a  0  ) values of 

 the linear calibration curve. These values were also inverted to be able to later convert the 

 measured voltages to a position on the potentiometer. The following sample calculations were 

 performed to get the linear fit constants, a  0  and  a  1  . 
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 Table 3:  Raw data used for calculating the spring  constant 

 For calculating the spring constant, we used five masses (201g, 501g, 702g, 902g, 1003g) 

 to place on the spring mass. The initial height and final height of the spring mass was measured 
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 as Δx in Table 3. The total load was calculated by multiplying the total mass (spring mass + 

 added mass) by the acceleration due to gravity (9.8m/s  2  ).  The spring constant was calculated by 

 dividing the total load by the Δx. The final spring constant values are displayed in the last 

 column of Table 3. 

 Since the potentiometer sensor isn't detachable from the upper collar, the output of 

 second-order motion, the characteristics of the input, or bottom collar, needed to be calculated 

 from the behavior of a step input. The step input responses allowed for an envelope analysis to 

 be performed, resulting in system parameters such as the natural frequency and damping ratio. 

 For redundancy, the envelope analysis was performed through two different methods; one 

 through Matlab and the other on Microsoft Excel.  In both analyzes, the output data of the step 

 input runs were manipulated to find the varying decaying amplitude. 

 Starting with the Matlab variation; our different runs were analyzed, each with a different 

 initial state, resulting in four different output responses as displayed in Figure 7. Due to the clean 

 nature of the data, no filtering was necessary for this specific analysis. Next, the mean value of 

 the final position, or steady-state voltage, was retrieved from the data by only using the time 

 range between four and five seconds after data acquisition began. This mean value was then used 

 to normalize the output response onto the x-axis, upon which the absolute value of the data was 

 taken to have more peaks, and thus more data points for the envelope analysis, which is 

 displayed in Figure 8. The “findpeaks” function is then applied to the manipulated data to find an 

 oscillation period and exponential envelope slope, which is defined by Equation 7. The slope, 

 referred to as tau, has two unknowns, which are the same unknowns in Equation 5. With this in 

 mind, the system of equations composed of Equation 5, Equation 7, and the natural frequency 

 and damping ratio is able to be solved. 
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 Figure 7  : An overlay of all step-input responses as  a function of time 

 Figure 8  : The manipulated step-response functions  for peak analysis 
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 Similarly, the step function analysis through Microsoft Excel solved for the same system 

 of equations consisting of Equation 5, Equation 8, and Equation 9. 

 Table 4:  Raw data, intermediate calculations for the  time constant (tau), damped natural frequency (w  d  ),  natural 
 frequency (w  n  ), and damping ratio. 

 After collecting the data as shown in Figures 7 and 8, values were put into Excel to 

 perform the necessary calculations to solve for the resulting natural frequency and damping ratio. 

 The time constant value (“Tau” in Table 4) for each peak was calculated using Equation 8. The 

 time constant values for all peaks of all four test trials were averaged to get an average time 

 constant value of 0.335s. For each of the four test trials, the damped natural frequency was 

 calculated by converting the period between two peaks from seconds to radians/second. After 

 averaging the damped natural frequencies for all four trials, the damping ratio was calculated 
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 using Equation 9 by using the average damped natural frequency and average time constant. The 

 natural frequency was then calculated using Equation 5. These calculations are shown in the 

 sample calculation below. 

 A third method used to determine the damping ratio related to the sharpness of resonance, 

 commonly noted as the quality factor, Q. This parameter is defined in Equation 12 and relates the 

 maximum amplitude ratio to the damping ratio. By utilizing our data at maximum amplitude, 

 which was determined visually on the day of data collection, a quick calculation was performed 

 to gather another unique value for the systems’ damping ratio for sake of redundancy and 

 cross-referencing. A sample calculation for this calculation is shown below. 

 As shown in the sample calculation below, the damping constant (c) was calculated using 

 equation 10 (with a substitution of Equation 11). The damping constant was calculated to be 

 0.847 N  2  s  2  /m  2  . 
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 Upon completion of the analysis of system parameters, the main sinusoidal data was 

 interpreted resulting in experimental amplitude ratios across a wide frequency range. To acquire 

 the magnitude data out of the system response, the sinusoidal amplitude was needed, which was 

 extrapolated using Matlab. 

 The first step involved visually inspecting the collected data sets from the potentiometer, 

 ranging from 10% power to 100% power in increasing and decreasing increments. In Figure 9. 

 the raw output can be visualized for a five second data acquisition period at 60% power (the 

 corresponding natural frequencies that correlate with each system power step are determined by 

 the calibration process and are referenced in the Results section). Moving forward, all sample 

 plots show the applied analysis to only the 60% power data, but it can be assumed that all 

 processes were carried out to all data sets for accurate results. 

 Figure 9  : The raw position-output of the potentiometer  in Volts 
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 As can be seen, the raw data isn’t as “clean” in terms of signal noise as deemed 

 acceptable for amplitude analysis. The far outliers on both extrema represent a physical loss of 

 contact between the potentiometer wire and variable bar, resulting in large spikes. Due to an 

 impurity in the wire closer to the lower end of its range, its plausible to relate the largest of these 

 outlier points to this physical anomaly. 

 To clear these outliers analytically, a “hampel” filter is used. Found within the Matlab 

 definitions, the “hampel” filter is a variation of windowed length parameter identifier, that 

 calculates the median and standard deviation within a given window or range. If an outlier 

 exceeds the standard deviation threshold of the given window, its value is replaced by the 

 calculated median value. This filter effectively cleared the physical noise that was recorded by 

 the potentiometer and resulted in a graph shown in Figure 10. 

 Figure 10  : The output of a hampel filter applied to  the data for 60% power 
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 Upon successfully implementing the digital filter, most of the signal processing has been 

 completed. The following manipulation resembles closely to the steps taken for the step-input 

 function response, where the mean of the data was calculated and used to normalize the the data 

 onto the x-axis, as well as taking the absolute value of the data set to invert all peaks onto one 

 quadrant. This manipulated form of the data, as seen in Figure 11, signifies the final preparation 

 before applying a “findpeaks” function to solve for the amplitude of each dataset at each 

 frequency. 

 Figure 11  : The final manipulated form of the sinusoidal  data for 60% power 

 The following figure depicts a visual representation of what the “findpeaks” function 

 calculates, and the mean amplitude value of each of all orange circles provided an accurate 

 estimation of the mean amplitude of the second-order system response at each given frequency. 
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 Figure 12  : The “findpeaks” function clearly depicting  the amplitude of the data set 

 After applying the aforementioned processes to all frequencies, the effective experimental 

 amplitudes were divided by the input amplitude, known as X  B  , to give a vector of amplitude 

 ratios. These values were plotted over a range of frequencies ratios (w/w  n  ) to give a final graph 

 resulting in the relationship between magnitude and frequency. Uncertainty was introduced in 

 terms of error bars, and is described in detail in the following section. 
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 Uncertainty Analysis 

 For this lab, we needed to perform an uncertainty analysis for the linear system 

 calibration for the position vs voltage data collected. Because the voltage measured was collected 

 by the computer in samples of 500000 for 5 seconds, the standard deviations were also 

 automatically calculated which we used in the uncertainty analysis. All sample calculations 

 shown are using the first values from the first trial or the average values. The sample calculations 

 shown below are the calculations needed to calculate the y  fit  values using the calculated 

 calibration values for a  1  and a  0  . From these values  for each of the six masses used in calibration, 

 we solved for the standard deviation using the formula also shown in the sample calculation 

 below. Using the standard deviations and t-values (determined by the number of samples taken - 

 2 which was 499998), the uncertainty came out to be ±0.00000599 V [95%]. 

 Using the calculated inverted a  1  value, we were able  to propagate the random uncertainty of the 

 y  fit  values from volts to millimeters as shown in  the sample calculation below. 

 In the following sample calculation, the systematic uncertainty of the ADC’s resolution 

 was calculated to be ±0.000075 V. Using error propagation, the total uncertainty in volts was 

 calculated to be ±0.0000752 V. To convert the total uncertainty of the calibration curve from 
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 volts to millimeters, the total uncertainty in volts was multiplied by the inverted a  1  value to get a 

 total uncertainty value for the calibration curve of ±0.0000274 mm. 

 After calculating the total uncertainty of the calibration curve, uncertainties of the second 

 order response variables are needed to be calculated. As shown in the sample calculation below, 

 the uncertainty of the damping frequency, w  d  , was  calculated using the four samples that we used 

 for finding the damping ratio, the standard deviation of the four samples, and the t-value 

 associated with the number of samples. The uncertainty of the damping frequency was calculated 

 to be ±0.364 rad/s. The uncertainty of the time constant was calculated by the number of peaks, 

 the standard deviation and t-value which came out to be ±0.0345s. Using these two uncertainties 

 with Equation 9 from above, the uncertainty of the damping ratio can be calculated. The partial 

 derivative of Equation 9 was calculated with respect to the damping ratio and the time constant 

 while multiplying by their respective damping ratio and time constant uncertainties for the error 

 propagation used in the uncertainty below. The uncertainty of the damping ratio came out to be 

 ±0.0123 [95%]. 
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 Table 5:  Raw data and values for uncertainty of the  spring constant, k. 

 Using the five spring constant trials from Table 5, we were able to calculate the random 

 uncertainty by finding the standard deviation, number of samples, and the t-value associated with 

 the number of samples. The uncertainty of the spring constant (k) was calculated to be ±7.59 

 N/m. Using the spring constant uncertainty, damping ratio uncertainty, and Equation 10 

 (combined with Equation 11), the uncertainty of the damping constant was able to be calculated. 

 In the error propagation shown in the sample calculation below, the partial derivatives of 

 Equation 10 with respect to the damping ratio and spring constant were calculated. In Table 5, 

 “Uc part 1” and “Uc part 2” represent the resulting value of the partial derivative of a variable 

 multiplied by the uncertainty of that variable. The uncertainty of the damping constant, c, was 

 calculated to be ±0.0928 N  2  s  2  /m  2  [95%]. 
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 In the uncertainty calculation for the natural frequency, the error propagation uses the 

 uncertainties of the damping ratio and damping frequency as well as the partial derivatives of 

 Equation 5 with respect to the damping ratio and damping frequency. As shown in the sample 

 calculation below, the uncertainty of the natural frequency was calculated to be ±0.369 rad/s 

 [95%]. 

 Results 

 The following plots depict the final relationships calculated and described throughout this 

 lab report. The first plot is a visual representation of the calibration curve performed to fit the 

 output of the potentiometer to a physical position parameter. 

 Figure 13:  Measured position vs recorded voltage values from calibration with uncertainty bounds in red. 
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 The next graph represents the time-dependent position of the top collar for four different 

 frequencies. It is worth noting that the graphs include the original data as measured by the 

 potentiometer and the filter data after applying digital signal processing, both of which have been 

 converted into units of meters through the calculated calibration curve. 

 Figure 14:  Raw data (blue) on the same plot as filtered  data (red) for four select frequencies 



 Smith, St. Germain, Dimo  35 

 The following graph plots the experimental amplitude ratio for all data sets, including 

 distinction between increasing and decreasing increments, along with the theoretical 

 frequency-dependent magnitude response based on experimental system parameters. 

 Figure 15:  Theoretical Magnitude of the system plotted  with experimental amplitude ratios at system frequencies 
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 The following graph is shown to provide a clearer picture of the behavior of error and 

 magnitude at the upper end of the frequency range that the system was capable of producing. 

 Figure 16:  Enlarged upper frequency range to visualize  constant-frquency cluster 
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 The last plot depicts the theoretical phase shift of the second-order system as a function 

 of the frequency domain. 

 Figure 17:  Theoretical phase shift of system at a damping ratio of 0.12 

 Lastly, a table of all system parameters, including uncertainty, shown below as a 

 culmination of every analytical procedure performed in this lab. 
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 Table 6:  Final results with uncertainty. 

 Discussion and Conclusion 

 Looking at the parameters and descriptions this lab developed, there are some interesting 

 features worth discussing. Firstly, nearly all the calculated uncertainty values for values in this 

 system were quite small, usually under 10% of the nominal value. The best explanation for this 

 comes from the extreme amount of data collected in each measurement. Collecting 500,000 data 

 points per value is certainly overkill for simple measurements like the ones done in the 

 calibration, but the benefit can’t be denied. Having such a huge amount of data means that any 

 amount of random uncertainty effectively rounds away due to significant figures, so effectively, 

 all of the uncertainty comes straight from the measuring devices and other biased sources. This 

 high confidence in the values is even shared with the spring constant uncertainty, which has an 

 uncertainty value less than 10% despite only acquiring five values. While a large sample size 

 doesn’t apply to this particular calculation, the standard deviation between the five values was 

 quite small, which resulted in a high confidence in this value as well. 

 The theoretical M(ω) graph and the X/X  b  plots found in Figure 15 both represent the 

 same idea, though M(ω) is modeled theoretically, while the X/X  b  values were recorded 

 experimentally. The first thing that pops out when viewing this graph is the difference between 

 the maximum value for M(ω) and the maximum experimental value. This difference is likely due 

 to an overestimate of the damping ratio in the model. Q-analysis indicates a damping ratio of 
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 0.08, which represents the model that would be developed from the experimental amplitude data, 

 while this lab's other methods result in a value of .12 generated from step function analysis. This 

 could have been caused by small variations in the experimental setup between when the step 

 function data was collected and when the oscillatory data was collected. While their relationship 

 has similar values at resonance (ignoring the resonance outlier), there is a notable gap between 

 the two plots on the left side of the peak (before resonance frequency). For values  near 

 resonance, this offset would likely be due to the higher amount of uncertainty present for larger 

 M(ω) values. At these near resonant frequencies, the amplitude of the peaks would vary more, 

 and thus the confidence in the amplitudes would be lower.  For values far from resonance, this 

 offset is likely due to the low amount of energy being applied to the system, which means that 

 frictional effects represent a larger percentage of the system’s interactions. This explanation also 

 describes the flat-topped behavior of the 20% power graph seen in Figure 14, as the second mass 

 was moving slow enough near the top and bottom of each oscillation that static friction likely 

 took over and held the mass still before continuing to oscillate. 

 A quick note about the phase lag relationship seen in Figure 17, since nearly all the data 

 points after 60% power had a frequency ratio (ω/ω  n  )  of ~1.4, these measurements should all be 

 several radians out of phase. Unfortunately, there is no way to confirm this using the 

 potentiometer sensor setup. Removing the top mass from the potentiometer setup was not an 

 option in this lab, as there was a fear that it might damage the wire or connection. As a result, the 

 actual input function of the bottom oscillator could not be measured to determine Φ  0  . 

 While this lab did produce quality data with good confidence intervals, there are still 

 pieces of the procedure that could be improved upon. While the first two experimental setups 

 (described in the Methods and Materials section) were an important part of the experimentation 
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 process that ultimately led to the final setup, they were ultimately a result of rushing ahead 

 instead of planning. Had the approach been more focused on theory for the first day and made 

 fewer assumptions early on, multiple hours worth of useless data collection could have been 

 prevented. Another issue present with this lab's procedure was the large gaps of data around the 

 resonance frequency shown in Figure 15, an unfortunate result of the order this project took data 

 in. All the data collection for an oscillating input was taken in one sitting, as the consistency of 

 the wires and climate was determined to be more valuable than repeated sessions. A repercussion 

 of this decision was that by the time data analysis began, it was too late to collect any more. With 

 an opportunity to do things differently, collecting data in smaller increments and with 

 redundancies around the resonance frequency would definitely be one of the main changes that 

 could improve this procedure. Additionally, collecting more data on the downward trend would 

 have provided a better understanding of potential hysteresis effects on the system. One final 

 improvement that could have been made would be to also use more points to determine the 

 spring constant of the system, k. This would reduce the uncertainty value for this parameter even 

 more, providing more confidence in its calculation. 

 In terms of feedback for this lab, this group definitely felt a strong time crunch as the 

 presentation and write up deadline got closer. Given the long time frame provided to complete 

 this, and the large amount of effort the write up and subsequent presentation required, a 

 recommended timeline that mentions key milestones would be a valuable resource for future lab 

 groups. This tool could provide groups with a better understanding of their progress towards the 

 final deadline, and help groups distribute the workload over the duration. 

 Ultimately, this lab tested many important skills from this class and industry that will 

 prove extremely valuable moving forward. By designing and testing a sensor from scratch, this 
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 lab taught valuable lessons on troubleshooting, iteration, and group design. Similarly, applying 

 second order response knowledge to real world unfiltered data validated the usefulness of 

 equations shown in class, substantiating the purpose of this lab further. With that being said, the 

 objective of this lab was a clear success, even despite the large workload required to complete it. 


